TRUTHS Update for GSICS

T raceable
R adiometry
U nderpinning
T errestrial- &
H elioS tudies

Nigel Fox (NPL), Thomas August (ESA), An ESA EarthWatch mission Andrea Marini (ESA)

A SITSat for climate quality observations & 'gold standard' reference in space

TRUTHS: Evolving 150 yrs of the SI

esa

truths

Metrology lab in space

Absolute radiometric anchor

Direct and vicarious
Satellite intercalibration

Improve EO Agencies & New Space data quality and services

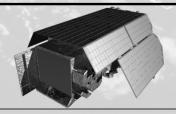
Enabling an integrated interoperable space climate climate quality observing system

The meter

Born 26 March 1791 in Paris

$\begin{array}{c|c} & s \\ & \Delta v \\ & k \\ & k$

SI standard


Climate benchmark

Incoming (solar) and reflected energy measured at unmatched accuracy

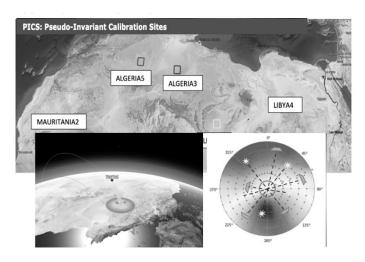
Shorten time-to-detect trends, assess climate action impact at policy timescales

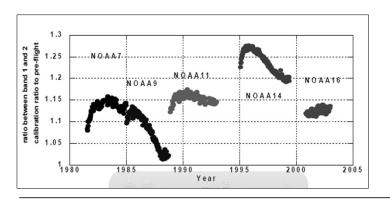
EO climate records, FCDR Calibration beyond lifetime

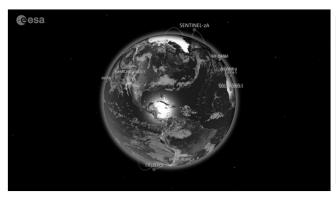
High spatio-spectral observations of radiative processes for climate models

TRUTHS

Radiometric reference in space 2030

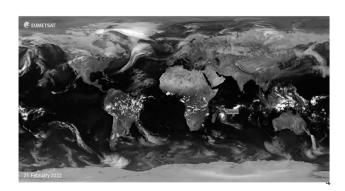

Bridge Co.



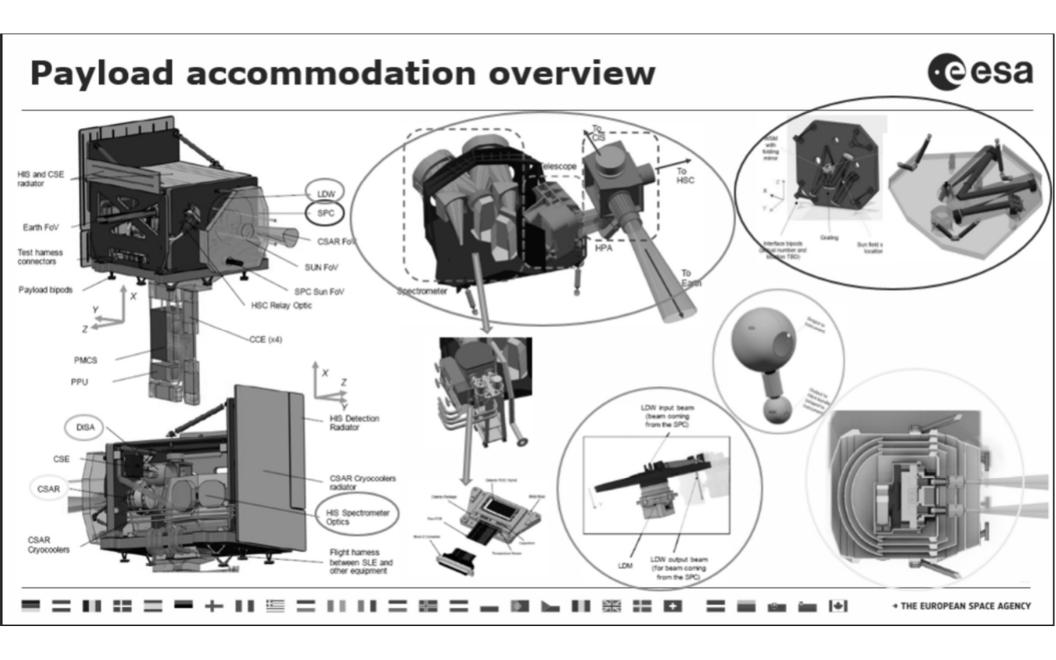


TRUTHS, an agile pointing hyperspectral benchmark

Recalibrate historical FCDRs

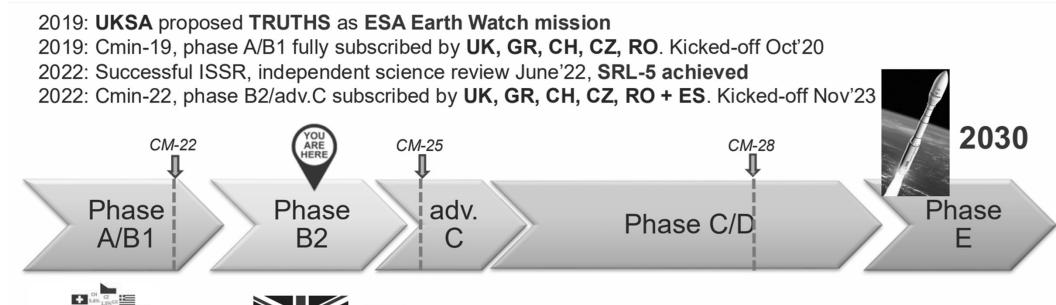

Operational and Climate Applications

Nadir direct intercalibration Slew in pitch & roll (up to ±40°) BRDF and vicarious calibration Characterise invariant CEOS sites Irradiance model of the moon


Direct raymatch
Intercalibrate LEO
Intercalibrate GEO-ring

Showcase Anchored Missions (SAMs)

	Mission	Instrument /Orbit	Provider
1	S3 / S3-NGO	Multispectral imager LEO	Operational service Global (land/sea) and dynamic range
2	S2 / S2-NG	Multispectral imager LEO	Operational service TRUTHS S2A_VIDEO Land - spatial resolution superior to TRUTHS Cesa
3	MTG-FCI	Multispectral imager GEO	Operational MET service Showcase GEO-TRUTHS EUMETSAT
4	CO2M	Hyperspectral mission LEO	Operational AC/AQ service Ambitious radiometric requirements (aerosols, formation) Coarser footprint but higher spectral resolution
5	VIIRS (Visible Infrared Imaging Radiometer Suite)	Multispectram imager Afternoon orbit	Climate profile. Libera/VIIRS. CLARREO-VIIRS VIIRS-TRUTHS
6	Landsat-9 / NG	S2-NG like LEO Quasi-constellation with S2 → intercal	Support US colleagues in calibrating Landsat-10. Strong ESA-NASA collaboration on S2-Landsat. Strong support expected at Agency level.


Indicative products

- ESA open data policy
- Deliance L1B TOA radiances (0.32-2.40 μm, 0.3%) + full uncertainties, on demand (Continuous)
 - land 100m ß bandwidth constraints, User requests (some applications) for 50 m?
 - ocean 200m
 - special observation events (calibration) 50m ß 1 min/day (43k km²) bandwidth constraints
- **■** L1C TOA radiances, re-gridded spatially (UTM/WGS84)
- Annual average TOA radiances, re-gridded
- L1B Total (0.3-30μm, 0.02%) and Spectral (0.3%) Solar Irradiance (Daily)
- L1B Lunar Spectral Irradiance (0.3%) (2 to 3/week)

build model of libration/phase

- L2 BOA spectral reflectance land/ocean (0.38-2.40 μm, ~1%)
- Simultaneous overpass catalogue for identified target missions
- Intercalibration tools è match-ups and calibration coefficients

Timeline

Major funding milestone CMin 25 (Nov 2025)

Mission Advisory Group:

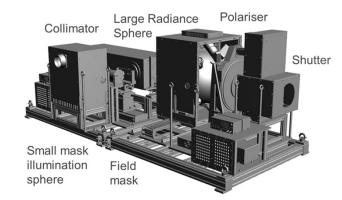
14 scientists from MS

3 observers from C3S, EUM, NASA

Support science studies:

Procurement ongoing, Kick-Off 09/2024 Ground Segment ITT imminent, Kick-Off Q2-2025

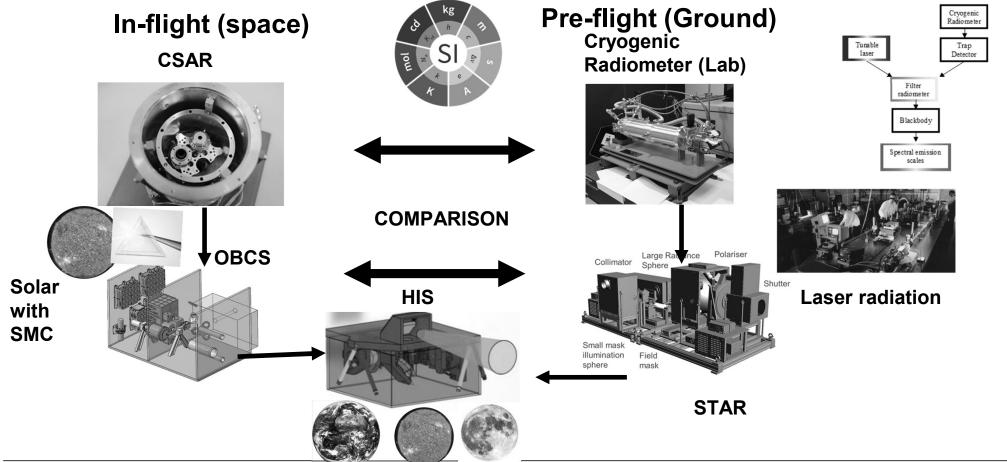
NPL - STAR-cc-OGSE: Preparing Ground Cal/Val



STAR-CC-OGSE provides radiometric calibration & characterization of satellite sensors.

- Fully automated, transportable and SI-Traceable
- The main components of the STAR-CC-OGSE system are:
 - A collimated beam source, with field mask for optical performance (geometric) characterization & 200 mm diameter exit port integrating sphere for flat-field radiometric calibration (with or without polarizer).
 - A CW laser monochromatic continuous tuneability from 260 nm to 2700 nm (pm resolution) plus a broadband (white light) source extending over the same spectral extent (for both illuminations). Simultaneous spectral, straylight, radiometric Caln
 - A vacuum-compatible detector module installable in TVAC at the sensor-under-test entrance aperture containing SI-traceable photodiodes and fibre to spectrometer

Symbol			Si		InGaAs	
	Source of Uncertainty	Probability Distribution	Value	ui	Value	ui
uAbs	Photodiode Absolute Calibration	Normal	0.05%	0.05%	0.05%	0.05%
uRel	Photodiode Spectral Response Calibration	Normal	0.08%	0.08%	0.10%	0.10%
uSp	Spectrometer	Uniform	0.05%	0.03%	0.05%	0.03%
UC	Combined Uncertainty (k=1)			0.10%		0.11%
U95	Expanded Undertainty (k=2)			0.19%		0.23%
	Photodiode Abs + Rel only (k=1)			0.09%		0.11%
	Photodiode Abs + Rel only (k=2)			0.19%		0.22%



Green, Baker et al

→ THE EUROPEAN SPACE AGENCY

TRUTHS: SI-Traceability summary

→ THE EUROPEAN SPACE AGENCY

Summary

- Mission scientifically and technically progressing well
- PDR in June 25
- Final Ground Segment design now starting
 - Data Volume downlink and storage still under optimisation
- Next funding (3 yrly) for flight hardware (Nov 25)
 - Encouraging new member states to join
- Science workshop in Autumn (Fall)

J 85 15 M